On the efficiency of fluid simulation of networks
نویسندگان
چکیده
Performance evaluation of computer networks through traditional packet-level simulation is becoming increasingly difficult as networks grow in size along different dimensions. Due to its higher level of abstraction, fluid simulation is a promising approach for evaluating large-scale network models. In this study we focus on evaluating and comparing the computational effort required for fluidand packet-level simulation. To measure the computational effort required by a simulation approach, we introduce the concept of “simulation event rate,” a measure that is both analytically tractable and adequate. We identify the fundamental factors that contribute to the simulation event rate in fluidand packet-level simulations and provide an analytical characterization of the simulation event rate for specific network models. Among such factors, we identify the “ripple effect” as a significant contributor to the computational effort required by fluid simulation. We also show that the parameter space of a given network model can be divided into different regions where one simulation technique is more efficient than the other. In particular, we consider a realistic large-scale network and demonstrate how the computational effort depends on simulation parameters. Finally, we show that flow aggregation and WFQ scheduling can effectively reduce the impact of the “ripple effect.”
منابع مشابه
Head-Driven Simulation of Water Supply Networks
Up to now most of the existing water supply network analyses have been based on demand-driven simulation models. These models assume that nodal outflows are fixed and are always available. However, this method of simulation neglects the pressure-dependent nature of demand that is characterized by changes in actual nodal outflows particularly during critical events like major mechanical or hydra...
متن کاملSimulation of the Effect of Centrifugation on Membrane Efficiency by Using Computational Fluid Dynamics During the Clarification of Pomegranate Juice
Background and Objectives: Pomegranate juice is prone to turbidity, which makes it hard to preserve and concentrate. Microfiltration is one of the membrane processes that can be used to reduce its turbidity, but, it is prone to membrane fouling. Pretreatment is considered the most effective way to reduce membrane fouling. Materials and Methods: This study simulated the effect of centrifugation...
متن کاملEnergy Efficiency and Reliability in Underwater Wireless Sensor Networks Using Cuckoo Optimizer Algorithm
Energy efficiency and reliability are widely understood to be one of the dominant considerations for Underwater Wireless Sensor Networks (UWSNs). In this paper, in order to maintain energy efficiency and reliability in a UWSN, Cuckoo Optimization Algorithm (COA) is adopted that is a combination of three techniques of geo-routing, multi-path routing, and Duty-Cycle mechanism. In the proposed alg...
متن کاملImprovement of Overall Efficiency in the Gas Transmission Networks: Employing Energy Recovery Systems
This study mainly focuses on enhancing the overall efficiency of gas transmission networks. The authors developed a model with detailed characteristics of compressor and pressure reduction stations. Following this, they suggested three different systems with gas turbine including: organic rankine cycle (ORC), air bottoming cycle (ABC), and ABC along with steam injection (SI-ABC). In addition, u...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Networks
دوره 50 شماره
صفحات -
تاریخ انتشار 2006